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ABSTRACT 

Principal component and partial least-squares in latent variable regression methods were applied to 
the multivariate calibration of overlapping chromatographic peaks for toluene, isooctane and ethanol 
mixtures. The degree of peak overlap was varied using column temperatures of 105, 120 and 130°C. Even 
using the most severely overlapped peaks (13o”C), the analysis errors obtained for validation set samples 
using both regression techniques were of the same size as those encountered using simple linear regression 

for individual determination of the three constituents. Truncation of the overlapped peak chromatograms 
appeared to lower the noise level without a significant loss of statistical information about the constituent 
concentrations. 

INTRODUCTION 

Quantitative chromatographic analysis of complex samples is often complicated 
by the occurrence of overlapping peaks of the mixture constituents. Expensive 
investment in sophisticated chromatographic equipment capable of separating 
overlapped peaks can be made, although more modest outlays involved in computer 
software and hardware can lead to accurate quantitative determintations of the 
constituents of mixtures. In some instances optimization techniques can be used to 
eliminate overlap, but longer elution times often result [ 11. In others, direct numerical 
treatment of the overlapped band system is applied. Chemometric techniques, such as 
the partial least-squares in latent variables (PLS) [2,3] and the principal component 
regression [4] (PCR) methods, have been applied to complex multi-component 
analysis using a variety of chemical instrumentation [5,6], including high-performance 
liquid chromatography [7]. The theoretical basis and mathematical formulations of 
these multivariate methods have also been described [X-IO]. 

In this work, the quantitative gas chromatographic analysis of toluene, 
isooctane and ethanol mixtures using the multivariate PLS and PCR methods is 
reported. Although diode-array detectors permit more sophisticated multivariate 
applications, the chromatographic system employed here has a simple thermal 
conductivity detector. Different degrees of peak overlap were investigated using 
chromatograms obtained at different column temperatures. The results of the 
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multi-component analysis compare favourably with those obtained for the individual 
analyses of the three constituents. Preprocessing of the raw chromatographic data, 
eliminating analytical signal for the wing portions of the band system, reduces the 
number of principal components or latent variables needed to perform the analysis, 
indicating that truncation reduces the noise level without a significant loss of statistical 
information about the concentrations of the constituents of the mixture. 

EXPERIMENTAL 

Fourteen calibration samples of toluene, isooctane and ethanol mixtures with 
mass ranges of 0.300-1.014, 0.2OlHl.787 and 0.308-0.964 mg, respectively, were 
prepared by direct weighing so that the concentration interval between these limits was 
more or less evenly covered. Six validation set mixtures were prepared in the same 
manner as the calibration samples. Analytical-reagent grade reagents from Merck 
(ethanol) and Carlo Erba (toluene and isooctane) were used. Ethanol was first treated 
with a molecular sieve to eliminate water. 

All chromatographic work was done using a Varian Model 920 chromatograph 
with a thermal conductivity detector and a 2 m x l/8 in. I.D. stainless-steel column 
packed with 5% SE-30 on Chromossorb W (St&l00 mesh). The measurements were 
performed at an injector temperature of 160°C and a detector temperature of 180°C 
with hydrogen as the carrier gas at a flow-rate of 30 ml mihr In Fig. 1 representative 
chromatograms obtained with column temperatures of 150, 120 and 130°C for 
a toluene-isooctane-ethanol mixture (0.613, 0.608 and 0.311 mg, respectively) are 
shown. 

PLS calculations were performed on an 8-bit CPM DICON microcomputer 
using the SIMCA-3B program acquired from Principal Data Components. [I 11. PCR 
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Fig. I. Representative chromatogram obtained with column temperatures of (a) 105, (b) 120 and (c) 130°C 
for (I) Toluene (0.613 mg), (II) isooctane (0.608 mg) and (III) ethanol (0.311 mg). 
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was carried out using the KARLOV subroutine of the ARTHUR/75 computer 
program [12] adapted for the PC-XT microcomputer [13] and a standard multiple 
regression program. 

PREPROCESSING 

The calibration concentration matrix is 14 x 3, each row containing the masses 
of the three constituents of the mixtures. Each row of the 14 x 41 chromatographic 
matrix contains the chromatographic responses of 41 evenly spaced intervals chosen to 
cover completely the overlapping peak system. Each row of both the concentration 
and the chromatographic matrix were normalized so that the sum of their elements was 
equal to one. The validation set chromatographic matrix (6 x 41) was formed in the 
same way as that used in the calibration step. Visual inspection of the overlapped peak 
chromatograms showed that the wings of the chromatogram superimpose for the 
calibration and validation set samples. As these portions of the peak system probably 
contribute little information about the constituent concentrations and also introduce 
noise into the PCR and PLS calculations the effect of peak truncation was tested using 
only the 26 central detector responses falling between the limits illustrated in Fig. 1. 
Normalization of the rows in the (14 x 26) calibration and (6 x 26) validation 
matrices of the truncated data set was also carried out. 

RESULTS AND DISCUSSION 

Individual analysis 
Separate chromatographic quantitative analyses of each of the three mixture 

constituents were performed to estimate the errors in the measurement procedures. 
The chromatographic conditions were identical with those employed for the mixture 
analyses, except that the column temperature was held constant at 120°C and benzyl 
alcohol was used as a mixture component. Eight calibration set samples with masses in 
approximately the same ranges as those used in the mixture analyses were used. 
Validation set standard prediction errors for three samples were calculated using 

SEP = JC cV,,k - y,,p)2/n (1) 

where ycalc and yenp are the percentage constituent masses calculated from the 
calibration graph and by direct weighing, respectively. The number of validation set 
samples, n, was three for the individual analyses. Standard prediction errors (SEP), 
expressed as percentages, for toluene, isooctane and ethanol of 0.95,0.82 and 1.22%, 
respectively, were estimated by this procedure. 

Principal component regression 
The number of principal components appropriate for use in a multi-component 

analysis is not known a priori. Table I contains information relevant for the 
determination of these numbers for analyses performed using the three column 
temperatures. F-values calculated using standard statistical equations for regressions, 
fluctuate over wide ranges for all the constituents at all column temperatures as the 
number of principal components included in the regression is increased. However, 
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TABLE I 

CALIBRATION SET F-TEST AND CORRELATION COEFFICIENT VALUES AND VALIDATION 
SET STANDARD ERROR VALUES FOR TOLUENE, ISOOCTANE AND ETHANOL CONCEN- 
TRATIONS FOR 41 VARIABLE EXPERIMENTS WITH COLUMN TEMPERATURES OF 105,120 
AND 130°C 

c01uInn Compound Parameter Number of PC” 
temperature 

(“ci 1 2 3 4 5 

105 Toluene 

Isooctane 

Ethanol 

120 Toluene 

Isooctane 

Ethanol 

130 Toluene 

Isooctane 

Ethanol 

F-value* 186 131 217 492 352 
Corr. coef.’ 0.969 0.980 0.992 0.998 0.998 
SEpd (%) 3.35 3.28 1.84 1.45 1.41 
F-value 1.47 153 201 646 663 
Corr. coef. 0.331 0.983 0.992 0.998 0.999 
SEP (%) 12.7 2.55 2.25 2.24 2.02 
F-value 9.99 1510 1270 862 823 
Corr. coef. 0.674 0.998 0.999 0.999 0.999 
SEP (%) 11.3 1.50 1.07 1.09 1.01 

F-value 107 492 202 143 195 
Corr. coef. 0.948 0.948 0.992 0.992 0.996 
SEP (%) 6.21 6.23 2.63 2.43 2.77 
F-value 2.21 20.7 171 141 156 
Corr. coef. 0.394 0.889 0.990 0.992 0.995 
SEP (%) 13.8 11.5 3.17 2.73 1.10 
F-value 6.47 156 167 177 128 
Corr. coef. 0.592 0.983 0.990 0.994 0.994 
SEP (%) 9.17 5.85 3.41 2.30 2.64 

F-value 67.1 31.7 93.1 84.3 392 
Corr. coef. 0.921 0.923 0.983 0.987 0.998 
SEP (%) 2.45 1.85 1.58 1.39 0.78 
F-value 1.58 46.5 106 73.1 183 

Corr. coef. 0.341 0.946 0.985 0.985 0.996 
SEP (%) 12.7 2.22 1.61 1.60 2.27 
F-value 7.26 342 357 580 428 

Corr. coef. 0.614 0.992 0.995 0.998 0.998 

SEP (%) 10.8 2.02 2.14 2.05 1.97 

a Number of principal components included in regression calculations. 
* Standard F-value calculated for the sums of squares due to regression and to residuals. 
’ Correlation coeffkient, r, for experimental and calculated concentrations. 
d Calculated using eqn. 1. 

once the F-values remain essentially constant or decrease, correlation coefficients for 
the experimental and analysed values of the constituent concentrations of the 
calibration set samples are larger than 0.99. For the analyses at column temperatures 
of 105 and 12O”C, three principal components included in the regression result in 
correlation coefficients of 0.99 or higher for all constituents. However, for the more 
severely overlapped groups of peaks, obtained with a column temperature of 130°C 
four or five principal components are necessary to obtain correlation coefficients this 
high. 

In principle, the standard errors for the six validation set samples could also be 
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used to estimate the appropriate number of principal components by comparing their 
values for the overlapped band systems with the standard errors obtained for the 
individual analyses of toluene, isooctane and ethanol. The standard error values in 
Table I are almost always much larger than those obtained for the individual analyses. 
Even when five principal components are included in the regression, errors in the PCR 
results of about twice the size of the errors for the individual analyses can be 
encountered. The larger errors in the mixture analyses can be the result of several error 
contributions that do not exist in the individual analyses. As shown later, some 
validation set samples have constituent concentrations which are not in the concen- 
tration domain of the calibration set samples. This is not a problem for the individual 
analyses as the validation set sample concentrations were always obtain by inter- 
polation procedures applied to the calibration graphs. Also, it is reasonable to expect 
that errors propagated in the mixture results may be larger than those for the 
individual results owing to more severe detector non-linearity problems and possibly 
matrix effects. 

For some constituents, analysis with certain column temperatures can be carried 
out using less than three principal components. For example, the determination of 
ethanol in the extremely overlapped peak system obtained with a column temperature 
of 130°C provides acceptable results using only two principal components. In Fig. 2 the 
ethanol concentrations of both the calibration and validation set samples as a function 
of the scores of the first two principal components are shown. These points form a well 
defined plane in this space, illustrating the usefulness of a two-variable regression in 
the analysis of the overlapped ethanol peak. 

Partial least-squares regression 
The PLS technique is especially convenient for estimating the number of 

components or latent variables to be included in the regression and for studying the 
effects of the peak truncation suggested above. Total standard prediction errors 
obtained from results of two block PLS treatments, for the validation set samples were 
calculated using eqn. 1. The ycalc and ye_, quantities are the weight percentages 
(normalized constituent masses) determined by the analyses and those obtained from 
the masses of the mixture preparations. The sum is taken over all the validation set 
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Fig. 2. Ethanol concentrations of both the calibration and validation set samples as a function of the scores 
of the first two principal components, obtained with a column temperature of 130°C. 
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Fig. 3. SEP values as a function of the number of components used in the PLS analysis for (a) the complete 
chromatograms (41 detector responses) and (b) the truncated peak systems (26 responses). Column 
temperature: a = 105; 0 = 120; 0 = 130°C. 

samples and all three constituents. Hence n is equal to the number of validation set 
samples times the number of constituents. Fig. 3 shows the graphs of the SEP values as 
a function of the number of components used in the PLS analysis for both the complete 
chromatograms (41 detector responses) and the truncated peak systems (26 responses). 
It can be observed that the SEP values become almost constant for three components 
or more for the complete 41 response data set. For the truncated 26 detector response 
set, values of SEP below 2.0% can be obtained using only two components for the 105 
and 130°C column temperature data sets. As the results of cross-validation were not 
clear for determining the number of components, two components were used to 
describe the 10.5 and 130°C truncated systems and three components for the others. 

Truncation of chromatograms leads to a reduction in the number of components 
necessary to perform the analysis for two reasons. First, the discarded data belong to 
regions where the chromatograms superimpose and apparently do not depend on the 
concentrations of the constituents. The data corrsponding to these regions of the 
chromatograms probably contain more noise than useful information about the 
constituent concentrations. Second, as the truncated regions correspond to low 
concentration values, the effects of non-linearity of the detector responses are also 
minimized. 

The 120°C data set represents a special case for which the intermediate 
resolution of the chromatograms results in the appearance or not of a third peak 
depending on the constituent concentrations. A graph of the scores of the first two 
principal components, shown in Fig. 4, confirms the existence of sub-classes with two 
or three partially resolved peaks, In spite of this, a one-class model was used in all our 
calculations. 

PLS-predicted weight percentages for the three constituents are compared with 
the experimental values for the six validation set samples in Table II. Results are 
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PC2 

Fig. 4. Score plot of the first two principal components for the 120°C data set containing 87% of the total 
data variance. Clustering of samples for different types of peak profiles is clearly evident. 

included for the three column temperatures studied. The residual standard deviations 
of the calibration set samples, 

So = f f e,$/[(p-A) (n-A-1)]1’2 
i k 

and the individual residual standard deviations of the validation set samples, 

(3) 

are also presented in Table II. In these equations the eki and e, are the differences 
between chromatographic detector values and those predicted by the PLS model. The 
sums are taken over the independent variables @ = 26 for the truncated system and 41 
for the complete peak system) and the number of samples in the calibration set 
(n = 14). The number of components (latent variables), A, is two for the 105 and 130°C 
column temperature analyses and three for those at 120°C. Only those validation set 
samples fitting the PLS calibration model within about 2& can be expected to have 
reliable PLS prediction values if a 95% confidence envelope for the calibration model 
is used as the classification criterion. For this reason, the sample numbers labelled b in 
Table II were not included in the calculation of the standard prediction errors of the 
validation set samples using eqn. 1. These error values (see Table II) are 1% or less for 
the three constituents analysed using column temperatures of 105 and 120°C for which 
overlap is less severe. For a column temperature of 130°C the errors are larger, but 
always less than 2%. 
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SAMPLE COMPOSITION AND PLS-PREDICTED VALUES (%, w/w) FOR TWO- AND THREE- 
COMPONENT PLS MODELS FOR 26-VARIABLE CHROMATOGRAPHIC ANALYSIS WITH 

COLUMN TEMPERATURES OF 105, 120 AND 130°C 

Column 
temperature 

(“C) 

& Sample No. Toluene Isooctane Ethanol & 

Exp. PLS Exp. PLS Exp. PLS 

120 

130 

105 0.254 1 
2b 

3 
4 
5 
6 

SEP (%) 

0.284 1 
2b 
3 
4 
5 
6 
SEP (%) 

0.247 lb 
2 
3 
4 
5 
6 

SEP (%) 

40.4 
13.9 
26.2 
26.7 
40.0 
33.8 

40.4 
13.9 
26.2 
26.7 
40.0 
33.8 

40.4 
13.9 
26.2 
26.7 
40.0 
33.8 

39.9 
16.4 
26.3 

26.6 
39.8 
33.0 

0.4 

40.9 
16.2 
27.4 
26.5 
39.3 
33.7 

0.7 

45.4 
14.3 
25.6 
26.4 
31.7 
32.7 

1.2 

25.8 
61.5 
40.7 
19.5 
39.7 
32.2 

25.8 
61.5 
40.7 
19.5 
39.7 
32.2 

25.8 

61.5 
40.7 
19.5 
39.7 
32.2 

25.9 
57.2 
38.9 
18.8 
39.3 
33.1 

1.0 

27.0 
65.9 
40.3 
19.5 
40.5 
32.6 

0.7 

25.3 
61.8 
39.9 
19.3 
43.5 
33.4 

1.8 

33.8 
24.7 
33.1 
53.9 

20.3 
34.0 

33.8 
24.7 
33.1 
53.9 
20.3 
34.0 

33.8 
24.1 

33.1 
53.9 
20.3 
34.0 

34.1 
26.4 
34.8 
54.7 
20.9 
33.9 

0.9 

32.1 
17.9 
32.3 
53.9 
20.2 
33.7 

0.9 

29.3 
23.9 
34.5 

54.3 
18.8 
33.9 

1.0 

0.215 
0.752 
0.328 
0.145 
0.179 
0.246 

0.151 
1.302 
0.389 
0.202 
0.409 
0.212 

0.571 
0.130 
0.121 

0.128 
0.174 
0.123 

’ S, and S, values calculated using eqns. 2 and 3. SEP values calculated using eqn. 1. PLS results are 
from two block calculations. For all calculations PLSz and PLS, calculations gave identical results within 
experimental error. 

b Results for these samples were not included the calculation of SEP as they do not fit the PLS 
calibration models, i.e., ST > 2.0&. 

The importance of excluding samples that do not fit the calibration model 
should be emphasized. Their constituent concentrations were not included in the 
calculation of the SEP values shown in Fig. 3 or in the determination of the 
appropriate number of latent variables to be included in the PLS analysis. Also, the 
PCR validation set sample errors in Table I are grossly inflated by errors from the 
constituent concentrations of these same samples which are not accurately described 
by the PCR model. Even though this three-analyte system is not complicated and the 
detector might be expected to provide linear additivity, it is usually risky to extrapolate 
with PLS or PCR. 

In Table III, standard prediction errors for the validation set samples for 
analyses made with the three column temperatures are presented for calculations using 
both the PCR and PLS methods. The number of principal components or latent 
variables for the calculations at each column temperature are indicated. The PLS and 
PCR prediction errors are very similar. 
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TABLE III 

STANDARD PREDICTION ERRORS (%) FOR VALIDATION SET SAMPLES USING THE PLS 
AND PCR METHODS FOR COMPLETE AND TRUNCATED CHROMATOGRAMS 

Method Column 
temperature 

(“C) 

A’ Toluene Isooctane 

PLS, complete 105 3 0.4 0.9 
120 3 2.6 1.3 
130 3 0.7 1.5 

PLS, truncated 105 2 0.4 1.0 
120 3 0.7 0.7 
130 2 1.2 1.8 

PCR, complete 105 4 0.3 1.0 
120 4 2.1 1.8 
130 4 0.7 1.7 

PCR, truncated 105 3 0.8 1.2 
120 4 0.8 1.1 
130 3 0.7 1.7 

Individual analyses 1.0 0.8 

Ethanol 

1.0 
1.7 
1.6 

0.9 
0.9 
1.0 

1.0 
1.9 
1.5 

0.9 
0.8 
1.1 

1.2 

a A = number of latent variables (PLS) or principal components (PCR) used in the regressions, 

The effect of eliminating detector readings for the wings of the overlapped peak 
systems on the standard prediction errors can also be seen in Table III. For either the 
PLS or PCR regression techniques the peak truncation performed here does not 
appear to have decreased the accuracies of the analyses. Some standard prediction 
errors decreased dramatically with peak truncation (e.g., PLS calculations for analysis 
with a column temperature of 12OC) whereas others increased slightly. 

CONCLUSIONS 

Both the PCR and PLS regression techniques result in similar standard 
prediction errors for the toluene-isooctane-ethanol mixtures studied here. The PCR 
method required one more regression variable (or component) than PLS. This has 
already been observed for multi-component analysis using fluorescence spectra [ 141. 
Increasing overlap of the chromatographic peaks did not result in large increases in the 
prediction errors. This is especially interesting because the calibration and validation 
set samples are identical for the three column temperatures used to control the degree 
of peak overlap. Peak truncation effected by eliminating the detector values of the wing 
portions of the overlapped peak system resulted in prediction errors slightly smaller 
than those obtained using the entire overlapped peak system. 
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